

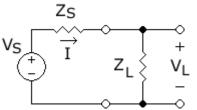
Low Power Design

Volker Wenzel on behalf of Prof. Dr. Jörg Henkel Summer Term 2016

CES – Chair for Embedded Systems

ces.itec.kit.edu

Overview Low Power Design Lecture

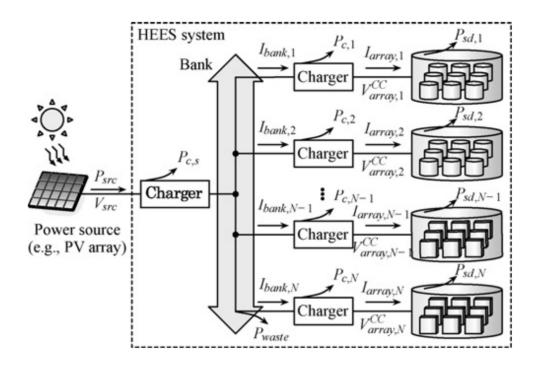


- Introduction and Energy/Power Sources (1)
- Energy/Power Sources(2): Solar Energy Harvesting
- Battery Modeling Part 1
- Battery Modeling Part 2
- Hardware power optimization and estimation Part 1
- Hardware power optimization and estimation Part 2
- Hardware power optimization and estimation Part 3
- Low Power Software and Compiler
- Thermal Management Part 1
- Thermal Management Part 2
- Aging Mechanisms in integrated circuits
- Lab Meeting

- Battery may be modeled as a voltage source in series with a resistance.
- internal resistance of battery dependent on
 - size
 - chemical properties

Internal Resistance

- age
- temperature
- discharge current
- Measurement of the internal resistance of a battery is a guide to its condition, but may not apply at other than the test conditions.
- Internal resistance increases on depletion of battery



Connecting Non-Identical Batteries in parallel

- Non-identically charged batteries have different voltages
- \rightarrow Batteries will mutually discharge

Schematic of the charge allocation process in a HEES system (src. [Xie])

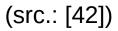
- Self-discharge present in all batteries due to internal chemical side reactions, internal short circuits
 - chemical reaction depend on battery technology
 - increases with charge
 - increases with temperature (Arrenhius?)
- Self-discharge in Li Ion is around 1.5-2% per month
- Self-discharge in NiMH is around 15-100% per month

Overview for today

- How to read a paper?
- A Stochastic Battery Model (Panigrahi, D. et al.)
- Battery-aware scheduling (Luo, J. et al.)

3-Pass Approach:

1. Pass


- read title, abstract, conclusions
- read section headings
- glance at equations

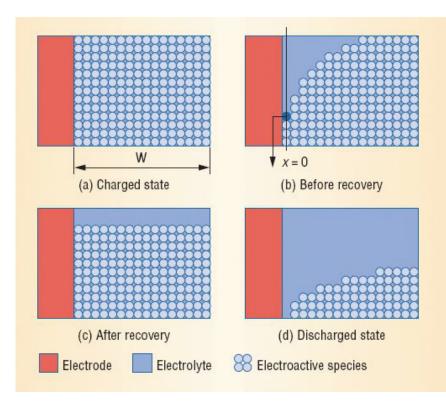
2. Pass

- read paragraphs in detail
- make notes
- ignore technical details (proofs, appendix, etc.)

3. Pass

- read carefully, word-by-word if necessary
- make an attempt to virtually re-implement the paper

Recap: Rate dependent battery capacity



Rate: defines how fast the battery is discharged

Shown is the mechanism that defines rate-dependent capacity

a) charged state

- b) before recovery
- c) after recovery
- d) discharged state

Recap: Battery Models - Comparison -

Model	Temperature effect	Capacity fading	Accuracy	Computational complexity	Configuration effort	Analytical insight	Applications
Physical							
Lithium- polymer- insertion cell (Doyle et al.)	Yes	Yes; support for Arrhenius temperature dependence and cycle aging added by Rong and Pedram	Very high	High	Very high (> 50 parameters)	Low	
Empirical							
Peukert's law	Yes; needs recalibration for each temperature	No	Medium (14% average error for constant load, 8% average error for interrupted and variable loads)	Low	Low (2 parameters)	Low	
Battery efficiency (Pedram and Wu)	Yes; needs recalibration for each temperature	No	Medium	Low	Low (2 parameters)	Low	Design of interleaved dual- battery power supply; load splitting for maximum lifetime of multibattery systems
Weibull fit (Syracuse and Clark)	Yes	No	Medium	Low	Low (3 parameters)	Low	

Recap: Battery Models – Comparison (cont'd)

Abstract							
Electrical- circuit (Gold)	Yes	Yes	Medium (12% error predicting cell voltage and thermal characteristics, 5% error predicting cycle aging)	Medium	Medium (> 15 parameters)	Medium	
Electrical- circuit (Bergveld et al.)	Yes	No	Medium	Medium	High (> 30 parameters)	Medium	Thermostatic charge method: high charging efficiency
Discrete-time (Benini et al.)	Yes	No	Medium (1% compared to Hspice continuous-time model)	Medium	Medium (>15 parameters)	Medium	Dynamic Power Management; multibattery discharge
Stochastic (Chiasserini and Rao)	No	No	High (1%)	Low	Low (2 parameters)	Medium (stochastic model of load pattern assumed)	Shaping load pattern to exploit charge recovery
Mixed							
Analytical high-level (Rakhmatov et al.)	No	No	High (5%)	Medium	Low (2 parameters)	High	Task scheduling by sequencing and V/f scaling; analysis of discharge methods for multibattery systems
Analytical high-level (Rong and Pedram)	Yes	Yes	High (3.5%)	Medium	Medium (> 15 parameters)	High	

Volker Wenzel

Idea:

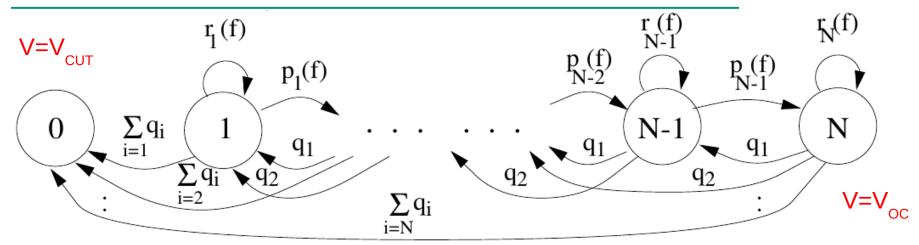
- battery-life estimation of HW/SW embedded systems
- exploration of alternative implementations

Definitions

- charge unit: smallest amount battery may be discharged with
- T: number of maximum available charge units
- N: nominal capacity of charge units (nominal: for very small currents). In practice: N << T
- N, T vary dependent upon battery and discharge current
- State of charge is tracked via a discrete time transient stochastic process

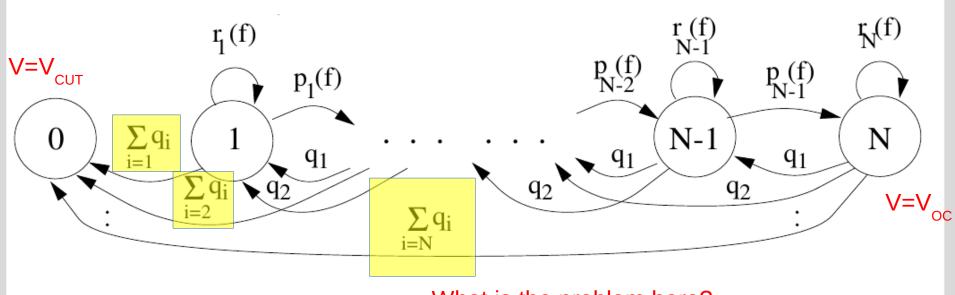
- Voltage 1 Volt
- Current 1 Ampere
- Charge 1 Coulomb = 1 Ampere * 1 Second
- Capacity 1 Farad = 1 Coulomb / 1 Volt
- Energy 1 Joule = 1 Newton * 1m = 1 Volt * 1 Coulomb

What is wrong here?


"We define the smallest amount of capacity that may be discharged as a charge unit"

V _{oc}	open-circuit potential	initial potential of a fully charged cell wo/ load
V _{CUT}	cut-off potential	potential at which the cell is considered discharged
	theoretical capacity	[Ah]
	nominal capacity	can be achieved when discharging at rated current
C _{rated}	rated current	the nominal capacity is determined by discharging with $\mathbf{C}_{_{\mathrm{rated}}}$
	battery lifetime	time until fully charged cell reaches $\rm V_{_{CUT}}$
	delivered specific energy	delivered energy over weight of battery
Т	maximum "charge units"	
Ν	nominal "capacity"	N< <t< td=""></t<>
q _i	probability of demanding i charge units in time slot	

Stochastic Battery Model


- Stochastic process starts from state of full charge ($V = V_{oc}$), denoted by N
- At each time unit, the state of charge decreases from state *z* to *z*-*n* with *n* being the charge units demanded from the battery
- On the other side: if no charge units are demanded, battery may recover → state of charge z may increase
- Stochastic process stops at absorbing state (V = V_{cut}) OR the max available capacity *T* is reached.
- Allowing idling periods between discharges → battery recovers and # of charge units drained before reaching state 0 is greater than N

"discrete-time transient stochastic process"

Stochastic Battery Model

What is the problem here?

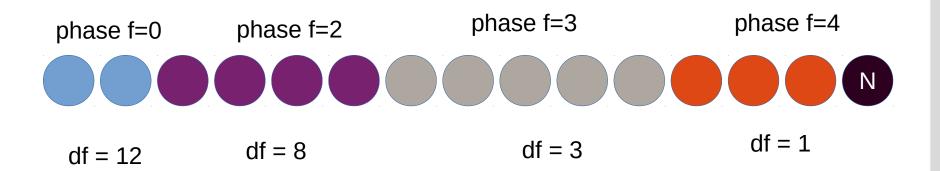
"Let us define q_i to be the probability that in one time unit, called slot, i charge units are demanded"

Recovery Process

Is represented as a decreasing exponential function of the state of the battery (i.e. it is the smaller, the smaller the remaining charge of the battery is)

During discharge, different phases can be identified:

Each phase f, ($f=0, ..., f_max$) starts right after d_f charge units have been drained from battery and ends when the amount of discharged capacity reaches $d_(f+1)$ charge units


Probability of recovering 1 charge unit in a time slot dependent upon state *j* (*j*=1, ..., *N*-1) and phase *f* is

$$p_{j}(f) = \begin{cases} q_{0}e^{-g_{N}(N-j)-g_{C}(f)} & f = 0\\ q_{0}e^{-g_{N}(N-j)-g_{C}(f)d_{f}} & f = 1,...,f_{max} \end{cases}$$

(src: [Pani01])

 g_N , g_C - parameters that depend upon the capability of recovery of the battery; a small g_N represents high cell conductivity (high recov. capability) and a large g_N represents high internal resistance.

probability of recovering 1 charge unit per time interval

$$p_j(f) = \begin{cases} q_0 e^{-g_N(N-j) - g_C(f)} & f = 0\\ q_0 e^{-g_N(N-j) - g_C(f)d_f} & f = 1, \dots, f_{max} \end{cases}$$

 q_0 probability of idle discharging 0 charge units per interval g_N constant $g_C = g_C(f)$

- g_c is related to the voltage drop of the battery cell during discharge
- q_0 is probability of an idle slot

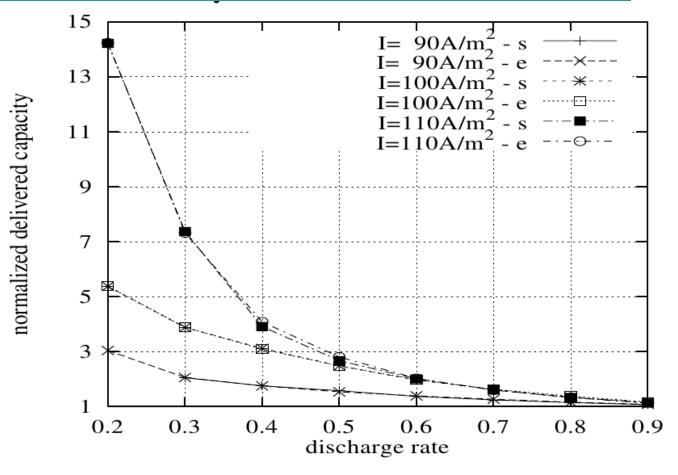
There is a **probability to remain in the same state** when discharged (due to the recovery effect):

$$r_j(f) = q_0 - p_j(f)$$
 $j=1,...,N-1$ (src: |
 $r_N(f) = q_0$.

(src: [Pani01])

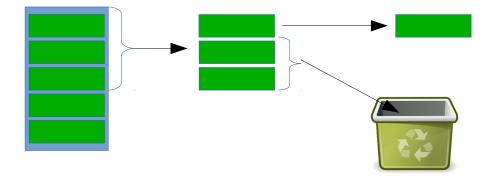
Assumption: g_N is constant;

 g_c is a piecewise constant function of the number of charge units already drawn off the cell; it changes value in correspondence with d_f (f = 1, ..., f_max). It is $d_0=0$ and $d_(f-max+1)=T$. Proper values are chosen according to the battery




```
Simulation_Step
inputs:
                   Current_State, Recovery_Probability[],
Discharge_Rate
outputs: Next_State
begin
      Generate a random number R between 0 and 1;
     If (R < Discharge_Rate) then
           Next_State := Current_State - 1;
      else if ( R < Recovery_Probability[Current_State]) then
           Next_State := Current_State + 1:
      end if
end
```


Stochastic battery model (cont'd)



"It can be seen that curves obtained from the PDE and the stochastic models match closely"

- next step: make battery model deterministic
- introduce battery efficiency to account for Rate Capacity effect
- build efficiency LUT using PDE model


```
Simulation_Step
inputs:
                             Current_State, Current_Demand,
Recovery_Probability[], Efficiency_Table[]
outputs: Next_State
variables: Actual_Demand
begin
      Generate a random number R between 0 and 1:
      Actual_Demand := Efficiency_Table[Current_Demand];
      If (Current_Demand > 0) then
           Next_State := Current_State - Actual_Demand:
      else if ( R < Recovery_Probability[Current_State]) then
           Next_State := Current_State + 1;
      end if
end
```


Table 3: Estimation of Battery Life and Delivered Energy Using Stochastic Model

	Rate	Capacity	Effect	ct Recovery Effect				Rate Capacity & Recovery Effect				
	Delive	1 7			vered		Deliv	1	5	İ	,	
System	Spec.Er	nergy I	Life Time	Spec.	Energy	Life Time	Spec. E	Energy	Life	Time	Packets	
	(Wh/l		(ms)	(Wł	n/Kg)	(ms)	(Wh/	Kg)	(1	ms)	Processed	
SYS1	1.36	59	16875	13	.357	163650	1.3	69	16	6875	20250	
SYS2	3.75	54	67717	15	.553	280543	3.7	54	67	7717	81260	
SYS3	2.85	58	88383	32	.924	1115616	4.9	74	15	3817	92290	
		Table 4	: Comp	arison w	vith PDE	E model : S	speed an	d Acci	uracy	/		
]		Delive	red Spec.	Energy		Life Time	-	(Compu	itation		
	System		(Wh/Kg)			(ms)			Time			
		STOC	PDE	% Err	STOC	PDE	%Err	STC	C	PDE	,	
]	SYS1	1.36	1.33	2.25	16785	17264	2.85	18.62	sec	>1 Da	ay	
Ī	SYS2	3.75	3.79	1.06	67717	65723	2.94	19.52	sec	>1 Da	ıy	
ſ	SYS3	4.97	5.07	2.01	153817	154956	1.00	40.35	sec	>2 Da	ys	

Battery-aware scheduling

Idea:

- adjust task schedule such that battery's capacity as a function of current distribution is taken into consideration (see [Luo01])
- Basis is the following equation:

$$p^{act} = \int dI \frac{V \cdot I}{c(I)} \cdot \hat{P}(I)$$

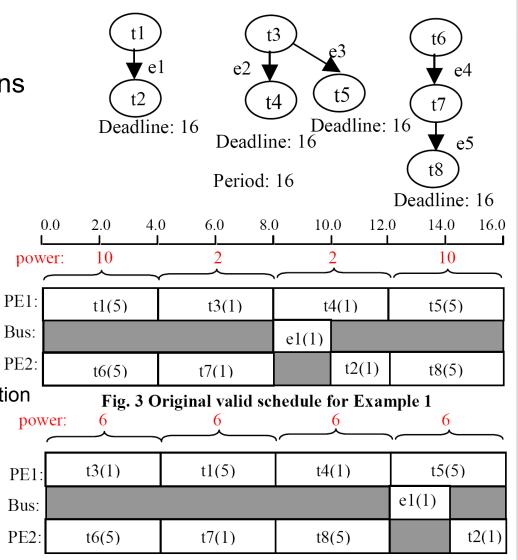
(src: [Pedram99])

- V : voltage (assumed constant)
- I : actual current drawn (piece-wise constant)
- c(I) : utilization factor

(i.e. ratio of battery capacity at discharge current I to standard capacity.) May be expressed through Peukert's law:

 $c(I) = k / I^b$ (normalized)

• $\hat{P}(I)$ is the probability density function of I (a measure of how evenly the value of the current is distributed)



Battery-aware scheduling (cont'd)

- goal: extend battery lifespan
- means: schedule transformations
- terms:
 - task graph
 - schedule
 - PE
- assumptions:
 - 2 PEs are connected via 1 bus
 - Intra-task communication costs are 0 PE2:
 - Power drawn during each task execution is constant
 - Notion: tx (y) means:

task 'x' has power consumption of 'y' units

Example 1: (cont'd)

Two different valid schedules are shown

Using equations 1 and 2 (and appropriate parameters) it turns out that the lower schedule is 15% more power efficient

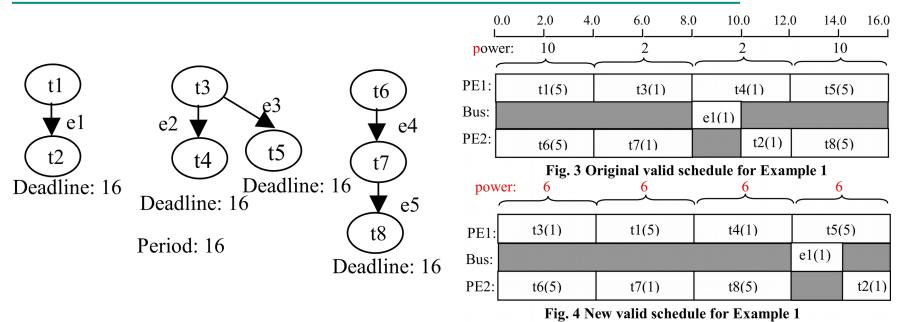
=> obviously equations 1 and 2 can be used in a cost function of a schedule to minimize the power consumption through considerations of battery effects

Example 2:

Same assumptions as before except for

t1, t3, t4, t5, t7 -> 0.2sec worst-case execution time (WCET)

T2, t6 -> 0.3sec


Edges (communication) e1, e2 -> 0.1sec

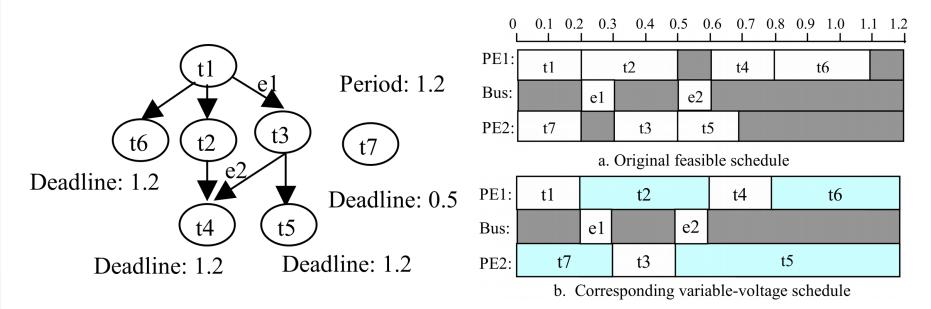
Task graph as shown on next slide

P (average) of each task is 1 unit; ... of each edge is 0.2units

Battery-aware scheduling (cont'd)

- Total power is the same,
- but power density is different
- second schedule: 15% improvement in power-drawn

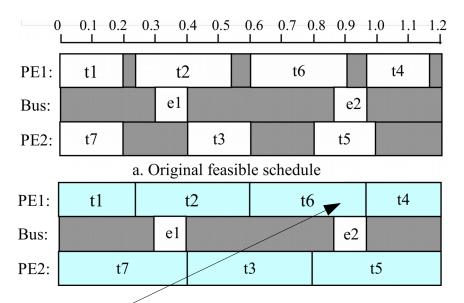
$$p^{act} = \int dI \frac{V \cdot I}{c(I)} \cdot \hat{P}(I)$$


(src.: [Luo01])

Battery-aware scheduling (cont'd)

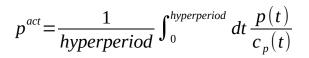
(src.: [Luo01])

ces.itec.kit.edu


- first schedule: ASAP
- · voltage scaling extends execution time to latest finish time

blackboard

0	0.1 0.2	2 0.3	3 0.4 0	.5 0).6 I	0.7 (0.8	0.9	1.0 I	1.1 I	1.2
PE1:	t1		t2		1	t4		t	6		
Bus:		e1		e2							
PE2:	t7		t3	t:	5						
a. Original feasible schedule											
PE1:	t1		t2		t	4			t6		
Bus:		e1		e2							
PE2:	t7		t3				t5				


b. Corresponding variable-voltage schedule

 even more improvement possible with slot shifting and swapping

(src.: [Luo01])

- battery-aware improvements of slackbased list scheduling
- reduce actual power

C	0.0 2.0 4	4.0 6.0 8	.0 10.0 1	2.0 14.0 16.0					
		$\mathbf{P}^{(1)}$		· · · · · · · · · · · · · · · · · · ·					
PE1:	t1(5)	t3(1)	t4(1)	t5(5)					
Bus:			e1(1)	\sim					
PE2:	t6(5)	t7(1)	t2(1) t8(5)					
a. Original schedule (3) (2)									
PE1:	t3(1)	t1(5)	t4(1)	t5(5)					
Bus:		-	e1(1) $\overset{(4)}{\square}$						
PE2:	t6(5)	t7(1)	t8(5)	t2(1)					
b. New schedule after first three steps									

- class used to represent battery, UPS, AC or DC power supply
- available via sysfs (/sys/class/power_supply)
- All voltages, currents, charges, energies, time and temperatures in μV, μA, μAh, μWh, seconds and tenths of degree Celsius unless otherwise stated.
 - CHARGE_* attributes represents capacity in µAh only.
 - ENERGY_* attributes represents capacity in µWh only.
 - CAPACITY attribute represents capacity in %, from 0 to 100.

Demo: Linux power supply class (cont'd)

- Alos possible to query battery information on higher abstraction levels:
- ACPI
 - sudo apt-get install acpi
 - watch --interval=5 acpi -V
- Upower

Volker Wenzel

[Piguet04] Ch. Piguet (Ed.), "Low Power Electronics Design", CRC Press, ISBN 0-8493-1941-2, 2004.

[Park05] Chulsung Park, Jinfeng Liu, Pai H. Chou, "B#: A Battery Emulator and Power-Profiling Instrument", IEEE Design & Test of Computers, Volume: 22, Issue: 2, pp.150 - 159, Feb. 2005.

[Luo01] Luo, J. Jha, N.K., Battery-aware static scheduling for distributed real-time embedded systems, IEEE/ACM Proc. Of Design Automation Conference (DAC'01), pp.444 – 449, June 2001.

[Pani01] Panigrahi T,D., Panigrahi D., Chiasserini, C., Dey, S., Rao R., Raghunathan A., Lahiri K., "Battery life estimation of mobile embedded systems", 14th. IEEE VLSI Design International Conf. 2001, pp.57-63, 2001.

[Rao03] Rao, R. Vrudhula, S. Rakhmatov, D.N, "Battery modeling for energy aware system design", IEEE ComputerMagazine, Dec. 2003, Volume: 36, Issue: 12, pp.77 – 87.

[Benini01] Benini, L. Castelli, G. Macii, A. Macii, E. Poncino, M. Scarsi, R, "Discrete-time battery models for system-level low-power design", IEEE Tr. on Very Large Scale Integration (VLSI) Systems, Volume: 9, Issue: 5, pp.630-640, 2001.

[Rakh01] Rakhmatov, D.N.; Vrudhula, S.B.K.; "An analytical high-level battery model for use in energy management of portable electronic systems", IEEE/ACM International Conference on CAD (ICCAD2001), 4-8 Nov. pp.488-493, 2001.

[Pedram99] Pedram, M.; Qing Wu; "Design considerations for battery-powered electronics", IEEE/ACM Proc. of 36th. Design Automation Conference (DAC99), pp.861-866, 1999.

[42] http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/07/paper-reading.pdf